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Resources
Textbook chapters

▶ Cunningham, Causal Inference: The Mixtape, Ch. 6
▶ Huntington-Klein, The Effect: Ch. 20
▶ Huber, Causal Analysis Impact Evaluation and Causal Machine Learning with

Applications in R, Ch.9

Review Articles

▶ Cattaneo, Idrobo, Titiunik; A Practical Introduction to Regression Discontinuity
Designs: Foundations ; In: Cambridge Elements: Quantitative and Computational
Methods for Social Science.

▶ Cattaneo, Idrobo, Titiunik; A Practical Introduction to Regression Discontinuity
Designs: Extensions ; In: Cambridge Elements: Quantitative and Computational
Methods for Social Science.
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https://theeffectbook.net/ch-RegressionDiscontinuity.html
https://mdcattaneo.github.io/books/Cattaneo-Idrobo-Titiunik_2020_CUP.pdf
https://mdcattaneo.github.io/books/Cattaneo-Idrobo-Titiunik_2020_CUP.pdf
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Regression Discontinuity: Starting Point

We want to estimate a treatment effect, but there is likely selection bias.

The required assumption

E [Y0i |Di = 1] − E [Y0i |Di = 0] = 0

does not hold.

RD exploits settings where this assumption often holds

▶ arbitrary thresholds that determine treatment assignment
▶ typically regulatory thresholds
▶ Probability of treatment “jumps’ ’ at the discontinuity
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Regression Discontinuity

Examples for discontinuities

▶ Income thresholds for social benefits
▶ Cutoff rules for class sizes
▶ GPA thresholds for getting into college
▶ Special treatment for babies with <1500g birth weight
▶ . . .

Basic idea

▶ At the threshold, the probability of treatment changes sharply
▶ But nothing else changes
▶ Being above or below the threshold is as good as random
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RD lingo

The forcing variable X

▶ The variable that determines treatment assignment
▶ Also called assignment or running variable

The discontinuity X0

▶ threshold value of the running variable at which treatment assignment jumps
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Example of a linear RD

The aim is to estimate the treatment effect (here τ) at the discontinuity
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RDD in a DAG

The running variable X determines the treatment D

Left: X may also affect the outcome through U

Right: Being above or below the threshold c0 is as good as random
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Sharp and Fuzzy Regression Discontinuity
Sharp RDD: treatment probability jumps at X0 from 0 to 1
Fuzzy RDD: treatment probability jumps at X0
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Example of a Sharp RDD: Carpenter & Dobkin (2009)
Observation: there is a spike in deaths around the 21st birthday

. . . but no difference around the 20th or 22nd birthday
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Example of a Sharp RDD: Carpenter & Dobkin (2009)

Carpenter & Dobkin (2009) investigate if this spike is due to the legal drinking age
(21 in US)

Idea: at 21, nothing changes except that people can drink legally

Sharp RD: age is the running variable

Da =
{

1, if a ≥ 21.

0, if a < 21.

Treatment status is a deterministic function of the running variable

▶ if we know a, we know Da
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Example of a Sharp RDD: Carpenter & Dobkin (2009)
Simple RD analysis in a regression framework

death ratea = α + ρDa + γa + ea
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Example of a Sharp RDD: Carpenter & Dobkin (2009)

Does the jump in the death rate ρ represent a causal effect?

Yes if Da is solely determined by a

▶ This is plausible in the given setting
▶ in this case there is no omitted variable bias
▶ no need to control for anything

Advantage of RDs: they are credible and transparent

Downside of RDs: they estimate local effects; difficult to extrapolate
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Example of a Fuzzy RDD: Hoekstra (2009)

Question: what is the impact of attending a State flagship university on earnings?

Background: many U.S. states have flagship universities

▶ Examples: University of Virginia, University of Florida, University of Michigan
▶ Is going to University of Florida better than going to University of Southern

Florida?

Challenge: it is not random who goes to a particular university
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Example of a Fuzzy RDD: Hoekstra (2009)

Identification strategy: Hoekstra exploits admission cutoffs in a fuzzy RD design

▶ Applicants need a certain SAT score to be admitted
▶ The design is fuzzy because not everyone with a high SAT score applies and enrols

Identification assumption: students cannot manipulate whether they are above or
below the cutoff
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Data used in Hoekstra (2009)

Administrative records from a large flagship university (not disclosed which one)

▶ Includes data on all applicants, including their SAT scores

Social Security Administration (SSA) data on earnings
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First stage: SAT vs enrolment
Binscatter of SAT scores and enrolment rates
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Reduced form: SAT vs log earnings
Binscatter of SAT scores and enrolment rates
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Lessons from Hoekstra (2009)

Being above the cutoff increases

▶ the probability of enrolling by close to 40 percentage points
▶ earnings by around 10 percent

We can calculate the LATE: 0.1
0.4 × 100% = 25%
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Sharp RD: Formal Derivation Angrist & Pischke (2009, ch. 6)

Treatment status Di is a deterministic function of xi with a discontinuity at x0

Di =
{

1 if xi ≥ x0
0 if xi < x0

Assume a constant effects model

E [Y0i |xi ] = α + βxi

Y1i = Y0i + ρ
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Sharp RD: Formal Derivation (Angrist & Pischke 2009, Ch.6)

The corresponding regression is

Yi = α + βxi + ρDi + ηi

Of if the trend relation E [Y0i |xi ] is non-linear:

Yi = α + f (xi) + ρDi + ηi

f (xi) modeled as a p-th order polynomial

Yi = α + β1xi + β2x2
i + . . . + βpxp

i + ρDi + ηi
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Sharp RD: Formal Derivation (Angrist & Pischke 2009, Ch.6)

Or allowing for separate trend functions for treated and untreated observations

E [Y0i |xi ] = f0 (xi) = α + β01x̃i + β02x̃2
i + . . . + β0p x̃p

i

E [Y1i |xi ] = f1 (xi) = α + ρ + β11x̃i + β12x̃2
i + . . . + β1p x̃p

i

with x̃i ≡ xi − x0

Use the fact that Di is a deterministic function of xi

E [Yi |xi ] = E [Y0i |xi ] + E [Y1i − Y0i |xi ] Di
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Sharp RD: Formal Derivation (Angrist & Pischke 2009, Ch.6)
Substituting polynomials for conditional expectations yields the regression

Yi =α + β01x̃i + β02x̃2
i + . . . + β0p x̃p

i

+ ρDi + β∗
1Di x̃i + β∗

2Di x̃2
i + . . . + β∗

pDi x̃p
i + ηi

If we want to restrict the sample to a bandwidth δ

E [Yi |x0 − δ < xi < x0] ≃ E [Y0i |xi = x0]
E [Yi |x0 < xi < x0 + δ] ≃ E [Y1i |xi = x0]

. . . the estimand becomes

lim
δ→0

E [Yi |x0 < xi < x0 + δ] − E [Yi |x0 − δ < xi < x0] = E [Y1i − Y0i |xi = x0]
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Extrapolation in a Sharp RD

The RDD does not have common support
▶ Units above the cutoff are treated Di = 1
▶ Units below the cutoff are untreated Di = 0 23 / 82



The Continuity Assumption

The continuity assumption is the key identifying assumption in the RD design

▶ It states that the potential outcomes are continuous functions of the running
variable X

▶ E [Y 0
i | X = x0] = E [Y 1

i | X = x0]

What does continuity mean?

▶ potential outcomes don’t jump at the cutoff
▶ there are no competing interventions
▶ people don’t select into being above or below the cutoff
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RD: Importance of Functional Form

RDs don’t guarantee the estimation of a causal effect

Problem: what looks like a discontinuous jump may actually be an increase in a
non-linear function

It is important to

▶ distinguish between a true causal effect and an increase in a non-linear trend
▶ assess (and model) the functional form between the running variable and the

outcome
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RD: Importance of Functional Form
Linear vs. quadratic function

26 / 82



RD: Importance of Functional Form
Example of a spurious jump

In an RD paper, it is important to show the robustness of the results to the choice
of functional form
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RD: Importance of Functional Form

We can capture the curvature by including a quadratic in age

death ratea = α + ρDa + γ1a + γ2a2 + ea

Problem: often the slope or curvature differs above and below the cutoff

For example, below 21-year-olds are subject to minimum drinking age laws
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RD: Importance of Functional Form

Two measures solve this problem

▶ center the running variable around the cutoff (i.e. use a − a0)
▶ add an interaction term (a − a0)Da

death ratea = α + ρDa + γ(a − a0) + δ[(a − a0)Da] + ea

This equation still identifies the effect at the cutoff (a = a0)
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RD: Importance of Functional Form

It is also possible to fit a polynomial on either side of the cut-off

death ratea = α + ρDa + γ1(a − a0) + γ2(a − a0)2

+ δ1[(a − a0)Da] + δ2[(a − a0)2Da] + ea
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RD: Importance of Functional Form
Linear vs quadratic functional form in Carpenter & Dobkin (2009)

Treatment effect is larger with quadratic controls
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RD: Importance of Functional Form

Source: Huntington-Klein, The Effect
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Overfitting? Crimes against Data?
Gelman & Imbens (2019): polynomials can lead to overfitting

33 / 82



Overfitting? Crimes against Data?

Overfitting

▶ There is often no scientific reason to have high-order polynomials
▶ Overfitting: parameter estimates rely on too few data points
▶ Large weights are given to observations far away from the discontinuity
▶ Genuine uncertainty from model dependence is not reflected in standard errors

More on overfitting in RDs: Green et al. (2009), Gelman & Imbens (2019)
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Bandwidth Selection

One method to reduce the likelihood of spurious effects is to narrow the bandwidth

The bandwidth is the “window” below and above the cutoff

Idea:

▶ The closer we “zoom in’ ’ on the cutoff
▶ . . . the lower is the chance of picking up a trend
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Bandwidth Selection

Trade-off in bandwidth selection

▶ smaller bandwidth ⇒ smaller bias
▶ smaller bandwidth ⇒ less precision

The graph on the following page illustrates two common methods

▶ (non-parametric) kernel density estimation
▶ local linear regressions

Optimal bandwidth selection is a very active area of research in econometrics. See,
for example, Imbens & Kalyanaraman (2012).
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Bandwidth Selection
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Bandwidth Selection: Practical Advice

In a typical RDD paper you will see a variety of bandwidths

The preferred bandwidth in many studies is the optimal bandwidth from Calonico
et al. (2014)

▶ It trades off bias and variance
▶ the rdrobust package in R implements this method
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Local Regression

Simplest form: compare means above and below within bandwidth

▶ Problem: differential trends in Y above and below can lead to bias

Alternatives:

▶ Local linear regression
▶ Kernel regression
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Local Linear Regression

Simple local linear regression restricts the sample to a0 − b ≤ a ≤ a0 + b

And estimates a linear regression in this window:

death ratea = α + ρDa + γa + ea

Or, more commonly, we can allow for different slopes above and below the cut-off
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Kernel Regression
Assign weights that

▶ are maximized at the cutoff
▶ are zero outside the bandwidth

Example for triangular kernel

Source: Huntington-Klein, The Effect
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Fuzzy RDD

In a fuzzy RDD, the probability of treatment jumps at the cutoff

P[Di = 1|xi ] =
{

g1(xi), if xi ≥ x0.

g0(xi), if xi < x0.

where g1(x0) ̸= g0(xi)

This set-up is equivalent to an IV estimator

▶ The discontinuity is the instrument for the treatment
▶ If we control for the forcing variable, the assignment of the IV is as good as

random
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Fuzzy RDD

Simplest case: let Ti be the discontinuity and Di be the treatment

The (hypothetical) first stage is

Di = γ0 + γ1Xi + γ2Ti + ei

But because we often don’t observe the treatment, we estimate the reduced form

yi = α + βTi + δXi + ui
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Fuzzy RDD

Wald Estimator with a bandwidth of δ

lim
δ→0

E [Yi |x0 < xi < x0 + δ] − E [Yi |x0 − δ < xi < x0]
E [Di |x0 < xi < x0 + δ] − E [Di |x0 − δ < xi < x0] = ρ
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Fuzzy RDD

Fuzzy RD becomes more tricky with interactions (treatment with forcing variable)

⇒ need a separate IV and first stage for each term including Di

This means that one has as many instruments as there are terms including Di

Rather than deriving this, we will look at an example: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

Angrist & Lavy (1999) study the impact of class sizes on student achievement

They exploit that class sizes in Israeli schools follow Maimonides’ rule

▶ Class size is capped at 40
▶ If enrollment reaches 41, two classes are formed
▶ Three classes are formed if the enrollment reaches 80, etc
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Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

Angrist & Lavy (1999) use the predicted class size as instrument for the actual
class size

Prediction is based on a mathematical formula (namely Maimonides’ rule)

Not all schools fully comply, but most do

This is a classic example of a fuzzy RD
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Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)
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Fuzzy RD: Angrist & Lavy (1999)

▶ Table II shows OLS estimates: There is a positive correlation between class size
and test scores in the raw data. This correlation vanishes when the fraction of
disadvantaged students is controlled for.

▶ Table IV shows the IV results, exploiting the regression discontinuities created by
Maimonides’ rule. The table displays various specifications with no, linear,
quadratic, and piecewise linear controls for enrollment, as well as estimates in
subsamples around the discontinuity points.
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Fuzzy RD: Angrist & Lavy (1999)

▶ Controlling for enrollment is important, particularly for the math test scores.
The form of the control matters less.

▶ On the other hand, the discontinuity samples give larger effects (in absolute
values) than the full sample, which is less comforting.

▶ Overall, they find that the IV estimates are larger than the OLS estimates.
▶ The downward bias of OLS is plausible as it may be the case that poorer

performing students are placed in smaller classes.
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Regression Discontinuity: Comments

Regression Discontinuity has become one of the most popular methods of causal
inference

Some reasons:

▶ It’s easy to explain to non-economists
▶ The researcher is forced to show patterns in the data
▶ Identification assumptions can be inspected graphically
▶ It is often clear what drives the variation in the treatment

For useful practitioners’ guides, see Matias Cattaneo (Michigan) and David Lee
(Princeton)
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Challenge to Identification

As with any method of causal inference, RD rests on an untestable identification
assumption

▶ being above or below the cutoff is as good as random

This may not be true if there is manipulation

▶ people may be able to choose whether they are above or below the cutoff
▶ teachers may grade people up, etc
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Example for Manipulation
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What Can/Should You Do?

There are non-parametric tests for heaping/bunching

▶ McCrary density test (McCrary, 2008)

Run placebo tests based on pre-treatment characteristics

▶ there should be no jump at the discontinuity
▶ if there is, that’s a problem

One solution: a donut hole estimator (leave out points close to the discontinuity)
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RD: The Cookbook

3 General Rules: plot, plot, plot!

1) Explain the Identification Strategy

▶ why is there a discontinuity?
▶ and what is the treatment that changes?
▶ what is the scope for manipulation?

2) Produce and discuss the main graph

▶ Outcome plotted against the running variable
▶ Best to use binned scatters
▶ Important to find the right functional form
▶ Use practitioners’ guides, for example Lee & Lemieux (2010)
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RD: The Cookbook

{Source: Lee & Lemieux (2010)}
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RD: The Cookbook

{Source: Lee & Lemieux (2010)}
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RD: The Cookbook

3) Report estimates based on different methods

▶ careful when using polynomials
▶ local linear regression
▶ kernel methods

4) Density and placebo tests

▶ Inspect if there is heaping at the discontinuity
▶ Run a McCrary density test
▶ Plot pre-treatment characteristics against the running variable
▶ Check out the latest literature. If you don’t run the latest tests, your referees will

ask you to (If you’re lucky). . .
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RD: The Cookbook

{Source: Lee & Lemieux (2010)}
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Appendix
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RDD in R

The following slides show how an RDD can be implemented with R. Most of this code
is from Cunningham’s Mixtape and Huntington-Klein’s Effect.

You need the following packages: tidyverse, stargazer, causaldata, and
rdrobust and rddensity.

We first simulate a dataset and then show how we run regressions.
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RDD in R – Simulated Dataset
# simulate the data
dat <- tibble(

x = rnorm(1000, 50, 25)
) %>%

mutate(
x = if_else(x < 0, 0, x)

) %>%
filter(x < 100)

# cutoff at x = 50
dat <- dat %>%

mutate(
D = if_else(x > 50, 1, 0),
y1 = 25 + 0 * D + 1.5 * x + rnorm(n(), 0, 20)

)
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RDD in R – RDD plot with gpplot

# Simulate data with discontinuity
dat <- dat %>%

mutate(
y2 = 25 + 40 * D + 1.5 * x + rnorm(n(), 0, 20)

)

# Plot
ggplot(aes(x, y2, colour = factor(D)), data = dat) +

geom_point(alpha = 0.5) +
geom_vline(xintercept = 50, colour = "grey", linetype = 2) +
stat_smooth(method = "lm", se = F) +
theme_minimal() +
theme(text = element_text(size = 20), legend.position = "none") +
labs(x = "Test score (X)", y = "Potential Outcome (Y)")
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The code from the previous slide gives this
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RDD Regressions in R

The regressions are based on the package causaldata, which has data on a
government transfer that was administered based on an income cutoff. The original
study was done by Manacorda et al (2011).
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RDD Regressions in R

Data preparation next slide

▶ binned data for bin scatter
▶ add kernel weights

69 / 82



RDD Regressions in R
gt <- causaldata::gov_transfers

# Use cut() to create bins, using breaks to make sure it breaks at 0
# (-15:15)*.02/15 gives 15 breaks from -.02 to .02
binned <- gt %>%

mutate(Inc_Bins = cut(Income_Centered,
breaks = (-15:15)*(.02/15))) %>%

group_by(Inc_Bins) %>%
summarize(Support = mean(Support),
Income = mean(Income_Centered))

# Add a triangular kernel weight
kweight <- function(x) {

# To start at a weight of 0 at x = 0, and impose a bandwidth of .01,
# we need a "slope" of -1/.01 = 100,
# and to go in either direction use the absolute value
w <- 1 - 100*abs(x)
# if further away than .01, the weight is 0, not negative
w <- ifelse(w < 0, 0, w)
return(w)

}

gt <- gt |> mutate(kweight=kweight(Income_Centered))
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RDD Regressions in R

Binned scatter

# Taking the mean of Income lets us plot
# data roughly at the bin midpoints

ggplot(binned, aes(x = Income, y = Support)) +
geom_point(size=5) +
theme_minimal() +
theme(text = element_text(size = 20)) +
# Add a cutoff line
geom_vline(aes(xintercept = 0), linetype = 'dashed')

71 / 82



0.6

0.7

0.8

0.9

−0.02 −0.01 0.00 0.01 0.02
Income

S
up

po
rt

72 / 82



RDD Regressions in R
# Reg 1: linear term

m1 <- lm(Support ~ Income_Centered*Participation, data = gt)

# Reg 2: model with square
m2 <- lm(Support ~ Income_Centered*Participation +

I(Income_Centeredˆ2)*Participation, data = gt)

# Reg 3: model with Kernel weights
m3 <- lm(Support ~ Income_Centered*Participation, data = gt,

weights = kweight)

# Regression results:

stargazer(m1, m2, m3, header=FALSE, type='latex', font.size="tiny",
single.row=TRUE)
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Table 1:

Dependent variable:
Support

(1) (2) (3)
Income_Centered −0.179 (1.916) −11.567 (7.777) −23.697∗∗∗ (6.430)
Participation 0.100∗∗∗ (0.030) 0.093∗∗ (0.046) 0.033 (0.037)
I(Income_Centeredˆ2) 562.247 (372.182)
Income_Centered:Participation −1.442 (2.516) 19.300∗ (10.445) 26.594∗∗∗ (8.916)
Participation:I(Income_Centeredˆ2) −101.103 (500.196)
Constant 0.730∗∗∗ (0.023) 0.769∗∗∗ (0.034) 0.819∗∗∗ (0.027)
Observations 1,948 1,948 1,948
R2 0.034 0.036 0.041
Adjusted R2 0.033 0.034 0.038
Residual Std. Error 0.313 (df = 1944) 0.313 (df = 1942) 0.217 (df = 933)
F Statistic 22.954∗∗∗ (df = 3; 1944) 14.625∗∗∗ (df = 5; 1942) 13.457∗∗∗ (df = 3; 933)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

74 / 82



RDD Regressions in R

On the previous slide we can see that

▶ The estimated treatment effect is large when we fit linear or quadratic regressions
(9.3pp, statistically significant)

▶ But it is small when we fit a triangular Kernel regression

Note: the Kernel regression uses a lot fewer observations (bias-variance trade-off. . . )
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Using rdrobust

rdrobust is a very useful package because it has many useful in-built functions

▶ generates RD plots
▶ allows for optimal bandwidth selection
▶ allows for fuzzy RDD
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Using rdrobust

# Estimate regression discontinuity and plot it
m <- rdrobust(gt$Support, gt$Income_Centered, c = 0, p=1)
summary(m)

# Note, by default, rdrobust and rdplot use different numbers
# of polynomial terms. You can set the p option to standardize them.
rdplot(gt$Support, gt$Income_Centered, masspoints="off", p=1)

Nice feature: can change the order of polynomial through the p option

Not so nice feature: hard to change the layout of the plot
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Density test with rddensity

gt <- causaldata::gov_transfers_density %>%
filter(abs(Income_Centered) < .02)

# Estimate the discontinuity
gt %>%

pull(Income_Centered) %>%
rddensity(c = 0) %>%
summary()
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